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ABSTRACT

In calorimeter experiments, we obtain the thermogram y = y(1), temperature
variation 3(¢) as a function of time ¢, when thermal reaction occurs in the calorimeter
reaction cell. For thermokinetic studies, we need to know the calorific power generated
in the cell, due to the thermal reaction, as a function of time. By use of the frequency
transfer function of the calorimeter, we can calculate numerically the calorific power
at any time from numerical analysis of the thermogram without any assumption of
analytical form of the transfer function.

The method is composed of three steps. (1) Experimental determination of the
frequency transfer function G of the calorimeter from numerical analysis of the
thermogram which is obtained by applying a constant calorific power in the calori-
meter cell. (2) Numerical Laplace transform L{y] = Y of the thermogram which is
recorded when the thermal reaction under investigation occurs in the cell. (3) Numeri-
cal determination of the calorific power, evolved by the thermal reaction in the cell, by
numerical inverse Laplace transform of Y/G.

This method is examined in two ways. First, simulation by numerical calculation
on a mathematical model calorimeter is done and the accuracy of the method is
assured. Second, experiments and numerical analysis on the heat-flow (conduction)
type of calorimeter are performed to test the availability of the method.

INTRODUCTION

In calorimeter experiments we obtain the thermogram which is a record of some
quantity as a function of time. The value is usually given by the position of a pen on an
electronic recorder, or out-put signal from a measuring device of the calorimeter.
In some cases, the output is proportional to the calorimeter temperature change and
in others, such as in DSC experiments, it is proportional to the electronic heat power
produced in the heater of the calorimeter cell. In all cases, the measured quantity is
neither equal to nor strictly proportional to the calorific power produced by a thermal
reaction to be investigated in the calorimeter cell. But it is ofien more necessary to
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obtain the calorific power rather than the thermogram especially in the case of
thermokinetic study. Therefore, our problem is how to obtain the calorific power
produced within the calorimeter cell starting from the measured thermogram.

For this problem, several authors have presented some methods of analysis of
the thermogram. Calvet expressed the thermogram curve by a series of exponentials
and tried to solve the equation by an analytical or graphical method!. Tateno and
Tachoire?- ? treated the thermogram by the Laplace transform, and expressed the
transfer function (TF) of the calorimeter in a2 simple analytical expression. However,
for more precise treatments, we must use a more complex form of the expression and
determine a larger number of calorimeter constants in the expression. As this is very
complicated and difficult work. we have used the frequency transfer function (FTF) of
the calonmeter and calculated the calorific power from an analysis of the thermo-
grams without anyv assumption of analytical form of the TF.

THEORETICAL

We assume the following properties of the calorimeter system:

(1) 2 linear relationship between the calorific power x(fr) and output signal
y(r) at time £;

(2) time-invaniant thermal properties of the system; that is, the heat capacity,
the heat conduction constant and other thermal properties of the calorimeter system
do not change throughout the experiment;

(3) zcro initial conditions of the system.

Then we have*

Y(s) = G(5)X(s) (1)

where X(s) = L[x(r)] and ¥(s) = L[3{¢)] are the Laplace transforms of x(z) and
¥(r), respectively, G(s) the transfer function (TF) of the calorimeter system and s the
parameter in the Laplace transform. If the TF G(s) of *he calorimeter and the Laplace
transform of the thermogram Y(s) = L[y(¢)] are known, we can obtain the desired
calonific power x{r) by the inverse Laplace transform of Y(s)/G(s). To carry out the
transform numerically, Tateno and Tachoire assumed a simple analytical form of
G(s). For 2 more precise treatment by their method, we must assume a more compli-
cated form of G(s). To avoid the complicated problems of determining a larger
number of the coefficients in the expression of G(s), we used the frequency transfer
function (FTF)? of the calorimeter and could calculate the transform numerically in
2 generzl scheme without any assumption of the analytical form of the TF G(s).

Determination of the FTF of a calorimeter

The FTF of a calonimeter system is determined by the analysis of output
respoanse y(f) when a constant heat power x(f) = xpfor7 = 0and x(f) = Oforr < O
is geacrated in the calorimeter cell. From the formula of the Laplace transform
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X(s) L{x(t)] = xol/s and L{dy(r)/dt] = s5Y(s) — y(4+0) = sY(s), we have
G(s) = Y(s)/X(s) = sY(s)/xo = L[dy(t)/dr]}/x,

- }% f e dy(1) @

Setting s = jw, we obtain the FTF as follows®

G(jw) = }1; f e = dy(1) (&)
[+]

where j = /1, wis the frequency in radians per unit time and G(jw) is the FTF. To
perform the integration (3) numerically, we divide the range of the integration into- °
intervals [z, r,.,] and approximate y(z) as linear with ¢ in [#,, 7.+;] as follows

J'(l) = (y-+l - ,-) (t - I,,),/(I.,-.l - rn) + Y (ln é 4 § rn+ l) (4)

where y, = y(1,) and y,;; = 3(ta5,1)-
Equation (3) then becomes

frsg

G(jw) = xiz =™ dy(1)

In

1 3 Ousr — )

= ol e ap— [(sinwe, ;. — sinwr) + j(coswt,,, — coswt,)] (3)

Transform of the thermogram y(t) into Y (jw)

A thermal reaction which we wish to investigate is then carried out and the
thermogram y(r) is obtained. The method of transforming the thermogram y(7) into
the frequency response Y(jw) is similar to that of obtaining the FTF illustrated above.
Setting s = jw in Y(s). we have

Y(w) = | wW()e ™ dt = VZ W) e ™ dr
-! x=1 :!:
= Y(w) + jY,(w) ©)

where



272

) = & 3 [Gurisimtas, = sy + Cest = 2 Cinwtne, — simen)] ;)
Yi(w) = %z_z [o L 1Coswt, ., — v.coswt) — Furt = i‘,';:‘j':"i";; - s""""] ®)

tlere we again divided the range of the integration into intervals [t 7.5:] and
approximated )(r) to be linear with zin [7,, .., ]

Determination of calorific power x(1) for t > 0

We can then determine the desired calorific power x(z) from the inverse Laplace
transform of Y(jw)/G(jw) = Y(jw)F(jw), where 1/G(jw) = F(jw). From the formula
we have

xit) = "—)lT '- Y(w)F(jw) e~ dw
= ._51.: J [(Acoswt — Bsinwit) + i(Asinwt 4 Bcoswr)] dw (¢
where
LG(w) = F(w) = F(w) + jFy(w)
A = Y(W)F(w) — Yi(w)Fy(w) (10)

B = YAw)F,(w) + Y,(W)F (w)
and the sufiixes r, i refer to the real and imaginary parts, respectively.

The Laplace transform of the sectionally continuous function gives an analytical
function, so that we can have® ¥(3) = Y{(s) and F(5) = F(s). Therefore, A and B are
even and odd functions of w, respectively, and eqn. (9) becomes

x(1) = —i— J (Acoswt — Bsinwi) dw (11)
B

Considering x(¢#) = O for ¢ < 0 and using the same approximation in (4) and (5), we

have

2
x(f) = % Acoswt dw (12)

O'—-—-..ﬂ

2 < (Aesy — A) (COSW, ;I — COsw,I)
= T-rt—.‘?‘, [(A_-,sm Weiad — Assinw, ) + et = D) ]

L (13)
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Here we have divided tne integral range into intervals {w,, w,. ;] and 4, = A(w,),
Apsy = A(Weyy).

Determination of x(+0)
From the initial value theorem of the Laplace transform
x(+ 0) = lm x(1) = lim sX(s),

=0 s x

and setting s = jw, we have

X(+ 0) = — lim W(Y.F; + %F) (14)

W

MATHEMATICAL SIMULATION BY A MODEL CALORIMETER

In order to test the accuracy of our method, we examined it in two ways. First,
we carried out a mathematical simulation by use of a mathematical model calori-
meter. Second, we carried out a test experiment with a commerciaily available
calorimeter which is widely used in Japan.

The mathematical model calorimeter is a one-dimensional model of a hest. .

conduction calorimeter which is composed of a reaction cell, thermal bath and a solid
thermal conductor connecting the cell with the thermal bath, as shown? in Fig. 1.
The dimensions and thermal properties of the model calorimeter were set to be nearly
equal to those of the available calorimeter as follows: the solid thermal conductor has

Reaction cell Theraal conductor Thernal bath

Fig. 1. One-dimensional model of a heat conduction calorimeter.
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Fig. 2. Bode plots of a model calorimeter.
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Fig. 3. Resuits of the wransform of the thermogram into a thermogenesis curve on a model calori-
meter.

the length L = 1.45 < 10~ ? m, the area of its cross-section S = 1.23 x 1072 m?, the
thermal conductivity A = 1.4 W mK ~?, and the thermal diffusivity K = 1.17 x 10™¢
m2 5™ 1. The temperature of the thermal bath is 84 = 298.15 K. the thermal capacity
of the cellis Co = 2123 K™ . Using this model, we can know precisely the FTF of the
calorimeter and output response for any thermal input from the theory of 2 one-
dimensional heat conduction calorimeter”’.

First, we drew a thermogram curve for a constant heat input of unit power
rom a numerical calculation by our model and its theory. Remembering that data is
usually obtained from a curve on an electronic recorder chart in a real expeniment, we
made a series of output response data for the constant heat from the thermogram
curve in order to simulate a real experiment. We analysed the data thus obtained and
obtained the FTF of the model calorimeter by our method. Figure 2 shows the Bode
plots of the FTF, where the circles are calculated from an analysis of the thermogram
curve for the constant heat input and the lines are theoretical which we can know
precisely from the theory of a one-dimensional heat conduction calorimeter”.

We then drew a thermogram curve for time vs. heat input

x(f) = 1.5 exp{— 1/30) s
The shape of the heat input was chosen because it would take place for a first-order
chemical reaction. We obtained a series of data by reading the curve, analysed the
data using the FTF calculated previously, and obtained the heat input at any time.
Figure 3 shows the results thus obtained and a comparison with the theoretical line,
eqn. (15). :
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Fig 4. Results of the transform of a thermogram into a thermogenesis curve on 2 TCC-2 calorimeter.

EXPERIMENT WITH THE AVAILABLE CALORIMETER

A Tokyo Rikd TCC-2 heat conduction type calorimeter was used to examine
our method for test heat input. Experiments were carried out at 25°C and 50 ml of
water were continaously stirred in the reaction cell. The heat was generated by
applying a voltage across an electrical resistance inside the cell. A constant or varying
voltage was supplied from a variable source. The output of the calorimeter is the
thermogram curve on chart paper of the electronic recorder and we obtained numeri-
cal data from reading of the curve. Figure 4 shows the comparison between the heat
generated in the cell and the calculated power from analysis of the thermogram by our
method.
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