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In calorimeter experiments, we obtain the thermogram y = y(r), temperature 

variation J-(I) as a function of time I, when thermal reaction occurs in the calorimeter 
reaction cell_ For thermokinetic studies, we need to know the calorific power generated 

in the cell, due to the thermal reaction, as a function of time. By use of the frequency 
transfer function of the calorimeter, we can calculate numerically the calorific power 
at any time from numerical analysis of the thermo_gram without any assumption of 
analytical form of the transfer function. 

The method is composed of three steps- (1) Experimental determination of the 
frequency transfer function G of the calorimeter from numerical analysis of the 

thermo_gram Which is obtained by applying a constant calorific power in the calori- 
meter cell_ (2) Numerical Laplace transform Lb] = Y of the thermogram which is 
recorded when the thermal reaction under investigation occurs in the cell_ (3) Numeri- 
cal determination of the calorific power, evolved by the thermal reaction in the cell, by 

numerical inverse Laplace transform of Y/G. 
This method is examined in two ways. First, simulation by numerical calculation 

on a mathematical model caiorimeter is done and the accuracy of the method is 
assured. Second, experiments and numerical analysis on the heat-flow (conduction) 
type of calorimeter are performed to test the availability of the method. 

In calorimeter experiments we obtain the thermo_eram which is a record of some 

quantity as a function of time. The value is usually given by the position of a pen on an 
electronic recorder, or out-put signal from a measuring device of the calorimeter. 
In some cases, the output is proportional to the calorimeter temperature change and 
in others, such as in DSC experiments, it is proportional to the electronic heat power 
produced in rhe heater of the calorimeter cell_ in ail cases, the measured quantity is 
neither equal to nor strictly proportional to the calorific power produced by a thermal 
reaction to be investigated in the caiorimeter celi. But it is often more necessary to 



obtain the caloriiic power rather than the thenno_gram especially in the case of 
thermokinetic study. Therefore, our problem is how to obtain the calorific power 
produced within the calorimeter cell starting from the measured thermogram_ 

For this problem, several authors have presented some methods of analysis of 
the thermogram_ CA-et expressed the thermogram curve by a series of exponcntials 
and tried to solve the equation by an analytical or -graphical method’. Tateno and 
Tachoire’- 3 treated the thermo_mm by the Laplace transform, and expressed the 

transfer function (TF) of the calorimeter in a simple analytical expression_ However, 
for more precise treatments. we must use a more complex form of the expression and 
determine a larger number of calorimeter constants in the expression- As this is very 
complicated and difficult work, we have used the frequency transfer function (FfF) of 
the calorimeter and calculated the ca1oriEc power from an analysis of the thermo- 
_mms without any assumption of analytical form of the TF. 

We assume the followiq properties of the calorimeter system: 

(1) a linear relationship between the calorific power x(r) and output signal 
y(f) at time r; 

(2) time-invariant thermal properties of the system; that is, the heat capacity, 
the heat conduction constant and other therma properties of the calorimeter system 
do not change throughout the experiment; 

(3) zero initial conditions of the system_ 

Then we have4 

Y(S) = G(mw 

where X(S) = L[x(r)] and Y(S) === Lb(r)] are the Laplace traprforms of X(Z) and 
+(I), respectively, G(s) the transfer function (Tf) of the calorimeter system and s the 
parameter in the Laplace transform_ if the TF G(s) of ?he calorimeter and the Laplace 
traxz&orm of the thenno_gram Y(S) = Lb(r)] are known, we can obtain the desired 
ulorific power x(r) by the inverse Laplace transform of Y(s)/G(s)_ To carry out the 
transform numerically, Tateno and Tachoire assumed a simple analytical form of 
G(S)- For a more precise treatment by their method, we must assume a more compli- 
cated form of G(s)_ To avoid the comp!icated problems of determining a larger 
number of the coefiTcients in the expression of G(s), we used the frequency transfer 

function (RF)’ of the calorimeter and could calcu!ate the transform numerically in 
a general scheme without any assumption of the analytical form of the TF G(s)- 

Defermitzation of the FTF of a caiorirneter 
The FTF of 2 cdorimeter system is determined by the analysis of output 

response y(t) when a constant heat power X(I) =xoforzLOandx(r)=Ofort<O 
is generated in the calorimeter a!i. From the formula of the Laplace transform 
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X(s) = L[x(t)] = x& and L [dy(f)/dr] = s Y(S) - y(+O) = sY(s), we have 

G(s) 

* 
1 dAQ =- - e-= dt 

X0 dr 
0 

00 

d,_(t) 
0 

getting s = ju*, we obtain the FTF as foilows’ 

(2) 

Qi 

G(&-) = 1 
x0 I e-j& dy(z) (3) 

0 

wherej = j ‘;I, w is the frequency in radians per unit time and G@) is the FTF. To 
perform the integration (3) numerically, we divide the range of the integration into. ’ 

intervals [t,, f,+ I ] and approximate y(t) as linear with t in [t., I,+, ] as follows 

y(r) e CL+* - yJ 0 - rMr.+, - r.8) -i- y-## (L I f 5 I,*,) (4) 

where y= = ~(1.) and Y,. + I = y(r, + 1 )- 
Equation (3) then becolhes 

Tnmsform of the rhermogram y(r) info Y(jw) 

A thermal reaciion which we wish to investigate is then carried out and the 

thermogram y(r) is obtained. The method of transforming the thermogram y(r) into 
the frequency response I’(&) is similar to that of obtaining the FTF illustrated above. 
Setting s = Jo in Y(S). we have 

* #“+I 

I 

N 
Y(jw) = y(t)e-‘“dt p 2 

I 
y<r) e-j- dt 

r=l 
0 In 

= YAW) + j&(W) 

where 
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Xere HZ again divided the range of the integration into intervals [z=, T,+ 1] and 
approximated y(r) to be linear with t in [I,,. f,+ ,I_ 

Dererminarion 0Jcaforific power x(t j for t > 0 

We can then determine the desired calorilic power x(t) from the inverse Laplace 
transform of Y( jw)iG( jw) = Y(jw)F( jw),where l/G&) = F&)_ From the formula 

(9) i _;(Asinwf i Bu~swr)] dw 

and the suf’iixes r. i refer to the ral and ima$nary parts, respectively_ 

The Laplace transform of the sectionally continuous function _eives an analytical 

function, so that m-e can have6 Y(S) = w) and F(5) I== F(S)). Therefore, A and Bare 
evtn znd odd functions of w, respectively, and eqn_ (9) becomes 

zc 

X(f) = ; 

_ 

J 
(Acoswz - Bsinwr) dw ill) 

0 

Considering x(c) = 0 for t -c 0 and using the same approximation in (4) and (S), wi 

have 

x(r) = f j Acoswr dw 

0 

(12) 

- Apinw,r) t (A =+I - A*) (cosw,, ,I - COSWJ) 

(w. + 1 r - w.1) 1 
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Here we have divided the inte_mI range into intervals [w,,, wn+i] and A,, = A, 

A ril = AW,,,). 

Dekrnrinarion of x( i 0) 
From the initial value theorem of the Laplace transform 

x(+ 0) = lim x(f) = lim sX(s), 
IdfO s-a 

and setting s = jw, WC have 

x(+ 0) = - lim Hf Y,F; i YiFr) 
w+2 

(14) 

MATHEMATICAL SIMULATIOX !3Y A MODEL CALORIMETER 

In order to test the accuracy of our method, we examined it in two ways. First, 
we carried out a mathematical simulation by use of a mathematical model calorb 
meter. Second, we carried out a test experiment with a commerciaily available 
calorimeter which is widely used in Japan. 

The mathematical model calorimeter is a one-dimensional model of a heat. 
conduction calorimeter which is composed of a raction cell, thermal bath and a solid 
thermal conductor connecting the cell with the thermal bath, as shown5 in Fig. I. 
The dimensions and thermal properties of the model calorimeter were set to be nearly 
equal to those of the available calorimeter as follows: the solid thermal conductor has 

Xeactioa cell %rerzaL coz2uctor Thernal bath 

Fig. I. Onodiional model of a hut conduction calorimeter. 

16 
-I 

i0 lb 

fig. 2 B~dc plots of a rnti calorimeter. 



Fig.3. Rcsuhsoftk~ormoFtbcthamogram into a thermogcncsIs curve on a model calti- 
meter- 

the len_@r L = I.45 x IO-* m, the area of its cross-section S = 1.23 x IOS3 m*, the 
thermal conductivity A = l-4 W mK- r, and the thermal diffusivity K = 1.17 x 10B6 
m2 s- r_ The temperature of the thermal bath is e. = 298.15 K. the thermal capacity 
ofthecell is C,, = 212.3 K- ‘_ Using this model, we can know precisely the FTF of the 
caIorimeter and output response for any thermal input from the theory of a one- 
dimensional heat conduction calorimeter’. 

First, we drew a thermo,grnm cume for a constant heat input of unit power 
from a numerical cafculation by our model and its theory- Remembering that data is 
usua.IIy obtained from a curve on an electronic recorder chart in a rczl experiment, we 
made a series of output response data for the constant heat from the thermogram 
curye in order to simulate a real experiment. We anaIyscd the data thus obtained and 
obtained the ITF of the model caiorimeter by our method. Figure 2 shows the Rode 
pIots of the FTF, where the circles are calculated from an anaIysis of the thermogram 
curve for the constant heat input and the lines are theoretid which we can know 
precisely from the theory of a one-dimensional heat conduction calorimeter’_ 

We then drew a thermo_gam curve for time vs. heat input 

x(f) = 1.5 exp(- r/30) (15) 

The shape of the heat input was chosen because it would take place for a first-order 
chemical reactior~ We obtained a series of data by reading the curve, analysed the 
data using the FfF calculated previously, and obtained the heat input at any time- 
Figure 3 show-s the results thus obtained and a comparison with the theoretical line, 
eqn. (IS). 
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Fig- 4. Rcsuil~ of the transform of a thermogram into a thermogexsis cur~c on a TCC-2 calorimeter. 

EXPERIhlESi WlTH THE AVAILABLE CALORINXER 

A Tokyo Rik6 TCC-2 heat conduction type caIorimeter was used to examine 
our method for test heat input. Experiments were carried out at 25°C and 50 ml of 
water were continuously stirred in the reaction cell. The heat was generated by 

applying a voltage across an electrical resistance inside the cell. A constant or vaving 

voltage was supplied from a variable source. The output of the calorimeter is the 
thermogram curve on chart paper of the electronic recorder and we obtained numeri- 
cal data from reading of the curve. Ficlre 4 shows the comparison between the heat 
generated in the cell and the calculated power from analysis of the thermogmm by our 
method. 

The author wishes to thank Dr. T. Nishikawa and Dr. I. Take& for their 
assistance with computer techniques. 
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